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Abstract This paper develops a novel approach for estimating latent state variables
of Dynamic Stochastic General Equilibrium (DSGE) models that are solved using
a second-order accurate approximation. I apply the Kalman filter to a state-space
representation of the second-order solution based on the ‘pruning’ scheme of Kim
et al. (J Econ Dyn Control 32:3397–3414, 2008). By contrast to particle filters, no
stochastic simulations are needed for the deterministic filter here; the present method
is thus much faster; in terms of estimation accuracy for latent states it is competitive
with the standard particle filter. Use of the pruning scheme distinguishes the filter here
from the deterministic Quadratic Kalman filter presented by Ivashchenko (Comput
Econ, 43:71–82, 2014). The filter here performs well even in models with big shocks
and high curvature.

R. Kollmann (B)
European Centre for Advanced Research in Economics and Statistics (ECARES),
Université Libre de Bruxelles, 50 Av. Franklin Roosevelt,
CP 114, 1050 Brussels, Belgium
e-mail: robert_kollmann@yahoo.com
URL: http://www.robertkollmann.com

R. Kollmann
Centre for Economic Policy Research (CEPR), London, United Kingdom

R. Kollmann
Université Paris-Est, Créteil, France

R. Kollmann
Centre for Applied Macroeconomic Analysis (CAMA),
Australian National University, Canberra, Australia

R. Kollmann
Globalization and Monetary Policy Institute, The Federal Reserve
Bank of Dallas, Dallas, TX, USA

123



240 R. Kollmann

Keywords Latent state filtering · DSGE model estimation ·
Second-order approximation · Pruning · Quadratic Kalman filter

JEL Classification C63 · C68 · E37

1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models typically feature state vari-
ables that cannot directly be measured empirically (such as preference shocks), or for
which data include measurement error. A vast literature during the past two decades has
taken linearized DSGE models to the data, using likelihood-based methods (e.g., Smets
and Wouters 2007; Negro and Schorfheide 2011). Linearity (in state variables) greatly
facilitates model estimation, as it allows to use the standard Kalman filter to infer
latent variables and to compute sample likelihood functions based on prediction error
decompositions. However, linear approximations are inadequate for models with big
shocks, and they cannot capture the effect of risk on economic decisions and welfare.
Non-linear approximations are thus, for example, needed for studying asset pricing
models and for welfare calculations in stochastic models. Recent applied macroeco-
nomic research has begun to take non-linear DSGE models to the data. This work has
mainly used particle filters, i.e. filters that infer latent states using Monte Carlo meth-
ods.1 Particle filters are slow computationally, which limits their use to small models.

This paper develops a novel deterministic filter for estimating latent state vari-
ables of DSGE models that are solved using a second-order accurate approximation
(as derived by Jin and Judd 2000, Sims 2000, Collard and Juillard 2001, Schmitt-Grohé
and Uribe 2004, Kollmann 2004 and Lombardo and Sutherland 2007). That approx-
imation provides the most tractable non-linear solution technique for medium-scale
models, and has thus widely been used in macroeconomics (see Kollmann 2002 and
Kollmann et al. 2011 for detailed references).When simulating second-order approx-
imated models, it is common to use the ‘pruning’ scheme of Kim et al. (2008), under
which second-order terms are replaced by products of the linearized solution. Unless
the pruning algorithm is used, second-order approximated models often generate
exploding simulated time paths. Pruning is therefore crucial for applied work based on
second-order approximated models. This paper hence assumes that the pruned second-
order approximated model is the true data generating process (DGP). The method
presented here exploits the fact that the pruned system is linear in a state vector that
consists of variables solved to second- and first-order accuracy, and of products of first-
order accurate variables. The pruned system thus allows convenient closed-form deter-
mination of the one-period-ahead conditional mean and variance of the state vector. I
apply the linear updating rule of the standard Kalman filter to the pruned state equation.

The filter here is much faster than particle filters, as it is not based on stochastic
simulations. In Monte Carlo experiments, the present filter generates more accurate
estimates of latent state variables than the standard particle filter, especially with big
shocks or when the model has high curvature. The filter here is also more accurate than

1 See Fernández-Villaverde and Rubio-Ramírez (2007) and An and Schorfheide (2007) for early applica-
tions.
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Tractable Latent State Filtering 241

a conventional Kalman filter that treats the linearized model as the true DGP.2 Due to
its high speed, the filter presented here is suited for the estimation of structural model
parameters; a quasi-maximum likelihood procedure can be used for that purpose.

This paper is complementary to Andreasen (2012) and Ivashchenko (2014) who
also develop deterministic filters for second-order approximated DSGE models, and
show that those filters can outperform particle filters. These authors too assume linear
updating rules. The filter here is closest to Ivashchenko’s (2014) ‘Quadratic Kalman
filter’ (QKF) that is also based on closed-form one-step-ahead conditional moments of
the state vector—the key difference is that the QKF does not use the pruning scheme.3

The present filter (based on pruning) performs well even in models with big shocks
and high curvature—for such models the QKF may generate filtered state estimates
that diverge explosively from true state variables. Such stability issues never arose
for the filter proposed here, in a wide range of numerical experiments. In models
with small shocks and weak curvature the filter developed here and the QKF have
similar performance. The present paper is also related to Andreasen et al. (2013) who
likewise derive a pruned state-space representation for second-order approximated
DSGE models and show how to compute moments for pruned models; these authors
develop a method of moments estimator for DSGE models, but do not present a filter
for latent state variables. (I learnt about Ivashchenko 2014 and Andreasen et al. 2013
after the present research had been completed.)

2 Model Format and Filter

2.1 Model Format and Second-Order Solution

Many widely-used DSGE models can be expressed as:

Et G(�t+1,�t , εt+1) = 0, (1)

where Et is the mathematical expectation conditional on date t information; G :
R2n+m → Rn is a function, and �t is an n × 1 vector of endogenous and exogenous
variables known at t; εt+1 is an m × 1 vector of serially independent innovations
to exogenous variables. In what follows, εt is Gaussian: εt ∼ N (0, ξ2�ε), where
ξ is a scalar that indexes the size of shocks. The solution of model (1) is a “policy
function”�t+1 = F(�t , εt+1, ξ), such that Et G(F(�t , εt+1, ξ),�t , εt+1) = 0 ∀�t .
This paper focuses on second-order accurate model solutions, namely on second-order
Taylor series expansions of the policy function around a deterministic stead state, i.e.

2 The literature has discussed ‘Extended Kalman filters’, i.e. Kalman filters applied to linear approximations
of non-linear models; e.g., Harvey (1989).
3 One-step-ahead moments in the QKF are derived under the assumption that estimation error of fil-
tered states is Gaussian. The filter here does not require that assumption. Ivashchenko (2014) also applies
two other deterministic filters to second-order approximated DSGE models: a Central Difference Kalman
filter (Norgaard et al. 2000) and an Unscented Kalman filter (Julier and Uhlmann 2004); these filters
are based on different deterministic numerical integration schemes for computing one-step-ahead condi-
tional moments (no analytical closed-form expressions). Andreasen (2012) estimates a DSGE model using
a Central Difference Kalman filter.
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around ξ = 0 and a point� such that� = F(�, 0, 0). Let ωt ≡ �t −�. For a q × 1
column vector x whose i-th element is denoted xi , let

P(x)≡ vech(xx ′)=((x1)2, x1x2, . . . , x1xq , (x2)2, x2x3, . . . , x2xq , . . . , (xq−1)2, xq−1xq , (xq )2),

be a column vector consisting of all squares and cross-products of the elements of x .4

The second-order accurate model solution can be written as

ωt+1 = F0ξ
2 + F1ωt + F2εt+1 + F11 P(ωt )+F12 · (ωt ⊗εt+1)+F22 P(εt+1), (2)

where F0, F1, F2, F11, F12, F22 are vectors/matrices that are functions of structural
model parameters, but that do not depend on ξ (Sims 2000; Schmitt-Grohé and Uribe
2004). The first-order accurate (linearized) model solution is:

ω
(1)
t+1 = F1ω

(1)
t + F2εt+1. (3)

The superscript (1) denotes a variable solved to first-order accuracy. It is assumed that
all eigenvalues of F1 are strictly inside the unit circle, i.e. that the linearized model is
stationary.

2.2 Pruning

As discussed above, I use the ‘pruning’ scheme of Kim et al. (2008) under which
second-order terms are replaced by products of the linearized solution–i.e. P(ωt ) and
ωt ⊗εt+1 are substituted by P(ω(1)t ) and ω(1)t ⊗εt+1, respectively. With pruning, the
solution (2) is thus replaced by:

ωt+1 = F0ξ
2+ vF1ωt + F2εt+1+F11 P(ω(1)t )+F12ω

(1)
t ⊗εt+1 + F22 P(εt+1). (4)

Note that P(ωt ) = P(ω(1)t ) and ωt ⊗εt+1 = ω
(1)
t ⊗εt+1 hold, up to second-order

accuracy.5 Thus, (4) is a valid second-order accurate solution. In repeated applica-
tions of (2), third and higher-order terms of state variables appear; e.g., when ωt+1 is
quadratic in ωt , then ωt+2 is quartic in ωt ; pruning removes these higher-order terms.
The motivation for pruning is that (2) has extraneous steady states (not present in
the original model)–some of these steady states mark transitions to unstable behavior.
Large shocks can thus move the model into an unstable region. Pruning overcomes
this problem. If the first-order solution is stable, then the pruned second-order solution

4 For a square matrix M , vech (M) is the column vector obtained by vertically stacking the elements of M
that are on or below the main diagonal.
5 ωt = ω

(1)
t +R(2) where R(n) contains terms of order n or higher in deviations from steady state. Letωi

t and

ω
(1),i
t be the i-th elements ofωt andω(1)t , respectively. Note thatωi

tω
j
t = (ω

(1),i
t + R(2))(ω(1), j

t + R(2)) =
ω
(1),i
t ω

(1), j
t +ω(1),it R(2)+ω(1), j

t R(2)+R(4); thus,ωi
tω

j
t = ω

(1),i
t ω

(1), j
t +R(3). Up to 2nd order accuracy,

ωi
tω

j
t = ω

(1),i
t ω

(1), j
t and P(ωt ) = P(ω(1)t ) holds thus. By the same logic, ωt ⊗εt+1 = ω

(1)
t ⊗εt+1 holds

to 2nd order accuracy. See Kollmann (2004) and Lombardo and Sutherland (2007).
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Tractable Latent State Filtering 243

(4) too is stable. The subsequent discussion assumes that the true DGP is given by
the pruned system (3),(4).

2.3 Augmented State Equation

The law of motion of P(ω(1)t ) can be expressed as
P(ω(1)t+1) = K11 P(ω(1)t ) + K12ω

(1)
t ⊗εt+1 + K22 P(εt+1), where K11, K12, K22 are

matrices that are functions of F1 and F2. Stacking this matrix equation, as well as (3)
and (4) gives the following state equation:

⎡
⎢⎢⎣
ωt+1

P
(
ω
(1)
t+1

)

ω
(1)
t+1

⎤
⎥⎥⎦ =

⎡
⎣

F0ξ
2

0
0

⎤
⎦ +

⎡
⎣

F1 F11 0
0 K11 0
0 0 F1

⎤
⎦

⎡
⎢⎢⎣
ωt

P
(
ω
(1)
t

)

ω
(1)
t

⎤
⎥⎥⎦ +

⎡
⎣

F2
0
F2

⎤
⎦ εt+1

+
⎡
⎣

F12
K12
0

⎤
⎦(

ω
(1)
t ⊗εt+1

)
+

⎡
⎣

F22
K22
0

⎤
⎦ P(εt+1). (5)

(5) can be written as: Zt+1 = g0 + G1 Zt + G2εt+1 + G12(ω
(1)
t ⊗εt+1)+ G22 P(εt+1),

with Zt+1 ≡ (ω′
t+1, P(ω(1)t+1)

′, ω(1)′t+1)
′
, while g0,G1,G2,G12 and G22 are the first to

fifth coefficient vectors/matrices on the right-hand side of (5), respectively. Thus,

Zt+1 = G0 + G1 Zt + ut+1, (6)

where G0 ≡ g0 + G22 E(P(et+1)), while

ut+1 ≡ G2εt+1 + G12(ω
(1)
t ⊗εt+1)+ G22[P(εt+1)− E(P(εt+1))]

is a serially uncorrelated, mean zero, disturbance. The (conditional) variance of ut+1
can easily be computed (see below). Note that ut+1 is non-Gaussian, as ut+1 depends
on squares and cross-products of the elements of εt+1, and on the product of εt+1 and
ω
(1)
t . (The absence of serial correlation of ut+1 follows from the assumption that εt+1

is serially independent.)
Importantly, the state equation (6) is linear in the augmented state vector Zt con-

sisting of the second- and first-order accurate variables, and of the squares and cross-
products of first-order accurate variables. 6 This allows convenient closed-form deter-
mination of the one-period-ahead conditional mean and variance of the state vector
(see below).

2.4 Observation Equation

At t = 1, . . . , T , the analyst observes a vector yt of ny variables that are linear
functions of the state vector ωt plus i.i.d. measurement error that is independent of

6 Aruoba et al. (2012) estimate a pruned univariate quadratic time series model, using particle filter methods.
These authors discard the term that is quadratic in εt+1 on the right-hand side of (4). By contrast, the paper
here allows for non-zero coefficients on second-order terms in εt+1, and it develops a deterministic filter
that can be applied to multivariate models.
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244 R. Kollmann

the state vector, at all leads and lags: yt = γωt + ψt where γ is an nyxn matrix and
ψt ∼ N (0, �ψ) is an nyx1 vector of measurement errors; �ψ is a diagonal matrix.
The observation equation can be written as:

yt = 	Zt + ψt , with	 ≡ (γ, 0). (7)

2.5 The Filter

Let ϒ t ≡ {yτ }t
τ=1 be the observables known at date t; Xt,τ ≡ E(Xt |ϒτ ) and V X

t,τ ≡
E([Xt − Xt,τ ][Xt − Xt,τ ]′ |ϒτ ) denote the mean and variance of the column vector
Xt , givenϒτ . The unconditional mean and variance are denoted by E(Xt ) and V (Xt ).

Given Zt,t and V Z
t,t , the 1st and 2nd moments of the augmented state vector Zt

conditional on ϒ t , we can compute one-period-ahead conditional moments of Zt+1
using (6):

Zt+1,t = G0 + G1 Zt,t , (8)

V Z
t+1,t = G1V Z

t,t G
′
1 + V u

t+1,t , with (9)

V u
t+1,t ≡ G2VεG

′
2 + G12(ω

(1)
t,t ⊗�ε)G ′

2 + G2(ω
(1)
t,t ⊗�ε)′G12

′

+G12

{(
V ω(1)

t,t + ω
(1)
t,t ω

(1)′
t,t

)
⊗�ε

}
G ′

12 + G22V (P(εt+1))G
′
22 (10)

(see Appendix). Here and henceforth the parameter ξ that indexes the size of the
exogenous shocks is normalized at ξ = 1

To generate Zt+1,t+1, V Z
t+1,t+1, I apply the linear updating equation of the standard

Kalman filter (e.g., Hamilton 1994, ch. 13) to the state-space representation (6), (7):7

Zt+1,t+1 = Zt+1,t + φt · (yt+1 − yt+1,t ), with yt+1,t = 	Zt+1,t , (11)

and φt = V Z
t+1,t	

′{	V Z
t+1,t	

′ +�ψ }−1,

V Z
t+1,t+1 = V Z

t+1,t − V Z
t+1,t	

′{	V Z
t+1,t	

′ +�ψ }−1	V Z
t+1,t . (12)

The filter is started with the unconditional mean and variance of Z0 : Z0,0 = E(Z0),

V Z
0,0 ≡ V (Z0); Zt+1,t+1 and V Z

t+1,t+1 for t ≥ 0 are computed by iterating on
(8)–(12).8 Henceforth, I refer to this filter as the ‘KalmanQ’ filter. Computer code
that implements KalmanQ is available from the author.

E(Z0) and V (Z0) can be computed exactly; see the Appendix. The linear updating
formula (11) would be an exact algorithm for computing the conditional expecta-

7 Linear updating rules are likewise assumed by Andreasen (2012) and Ivashchenko (2014) who also
develop deterministic filters for second-order approximated DSGE models (see above).
8 It is assumed that the inverse of 	V Z

t+1,t	 +�ψ (covariance matrix of prediction errors of observables)
exists. A sufficient condition for this is that�ψ is positive definite, as assumed in the numerical experiments
below.
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tion Zt+1,t+1, if Zt+1 and the observables were (jointly) Gaussian, as then Zt+1,t+1
would be a linear function of the data. This condition is not met in the second-
order approximated model, as the disturbance ut+1 of the state equation (6) is
non-Gaussian. However, as shown below, the KalmanQ filter closely tracks the
true latent states.9 Without Gaussianity, Zt+1,t+1 is a non-linear function of data
ϒ t+1 : Zt+1,t+1 = φ(yt+1, ϒ

t ). (11) can be viewed as a linear approxima-
tion of this function: Zt+1,t+1 ∼= φt · (yt+1 − y), where y is the steady state of
yt+1 and φt ≡ ∂φ(yt+1, ϒ

t )/∂yt+1|yt+1=y . By the Law of Iterated Expectations,
Zt+1,t = E(Zt+1,t+1|ϒ t ), and thus: Zt+1,t+1 − Zt+1,t ∼= φt · (yt+1 − yt+1,t ).

When the linearized model is the true DGP (i.e. when F0 = 0, F11 = 0, F12 = 0,
F22 = 0), then the filter here is identical to the conventional linear Kalman filter, and
the updating formula (11) holds exactly. In the presence of second-order model terms,
KalmanQ is more accurate than a conventional Kalman filter that assumes that the
linearized model (3) is the true DGP; see below.

2.6 Quasi-Maximum Likelihood Estimation of Model Parameters

If model parameters are unknown, then a quasi-maximum likelihood (QML) esti-
mate of those parameters can be obtained by maximizing the function L(ϒT |θ) ≡∑T

t=1 ln h(yt |yt,t−1(θ); V y
t,t−1(θ)), with respect to the vector of unknown parame-

ters, θ . Here h(y|μ; V ) is the multivariate normal density with mean μ and vari-
ance V . For a given θ, yt,t−1(θ) ≡ 	Zt,t−1(θ) is the prediction of yt generated by
KalmanQ, based on date t − 1 information, ϒ t−1; V y

t,t−1(θ) ≡ 	V Z
t,t−1(θ)	

′ +�ψ

is the conditional variance of yt , given ϒ t−1. Under conditions discussed in
Hamilton (1994, ch. 13), the QML estimator θQM L

T is asymptotically normal:√
T (θQM L

T − θ0) → N (0, (J2(J1)
−1 J2)

−1), where θ0 is the true parameter vec-
tor and J1 ≡ plim T −1 ∑T

t=1 ηt (θ0)ηt (θ0)
′, with ηt (θ0) ≡ ∂ log(ht (θ0))/∂θ,

ht (θ) ≡ h(yt |yt,t−1(θ0); V z
t,t−1(θ0)) and J2 ≡ plim T −1 ∑T

t=1 ∂
2 log(ht (θ0))/∂θ∂θ

′.

2.7 Ivashchenko’s (2014) Quadratic Kalman Filter (QKF)

The QKF posits that the unpruned second-order approximated model (2) is the true
DGP [instead of the pruned system (3), (4)]. The QKF is derived under the assump-
tion that the vector of estimation errors of filtered states and exogenous innovations
�t,t+1 ≡ (ω′

t − Etω
′
t , ε

′
t+1)

′ is Gaussian. Ivashchenko (2014) assumes a linear updat-
ing rule similar to (11): ωt+1,t+1 = ωt+1,t + ϑt · (yt+1 − yt+1,t ), where ϑt is defined
analogously to φt in (12); thus knowledge of V ω

t+1,t (one-period ahead conditional
variance of ωt+1), is required for the QKF filter. (2) implies that V ω

t+1,t depends on
the conditional fourth moments of �t+1. Under the assumed normality of �t+1, it is
easy to compute those fourth moments in closed-form, as functions of the conditional
variance of �t+1.

9 Recall that the observable yt+1 is a linear function of Zt+1 [see (7)]; this may help to explain the good
performance of the linear updating rule.
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3 Monte Carlo Evidence

3.1 A Textbook RBC Model

The method is tested for a basic RBC model. Assume a representative infinitely-
lived household whose date t expected lifetime utility Vt is given by
Vt = { 1

1−σ C1−σ
t − 1

1+1/η N 1+1/η
t

} + λtβEt Vt+1, where Ct and Nt are consump-
tion and hours worked, at t , respectively. σ > 0 and η > 0 are the risk aversion
coefficient and the (Frisch) labor supply elasticity. λt is an exogenous random taste
(discount factor) shock that equals unity in steady state. 0 < β < 1 is the steady state
subjective discount factor. The household maximizes expected lifetime utility subject
to the period t resource constraint

Ct + It = Yt , (13)

where Yt and It are output and gross investment, respectively. The production function
is

Yt = θt K α
t N 1−α

t (14)

where Kt is the beginning-of-period t capital stock, and θt > 0 is exogenous total
factor productivity (TFP). The law of motion of the capital stock is

Kt+1 = (1 − δ)Kt + It . (15)

0 < α, δ < 1 are the capital share and the capital depreciation rate, respectively. The
household’s first-order conditions are:

λt Etβ(Ct+1/Ct )
−σ (θt+1αKα−1

t+1 N 1−α
t+1 + 1 − δ) = 1, C−σ

t (1 − α)θt Kαt N−α
t = N 1/η

t .

(16)

The forcing variables follow independent autoregressive processes:

ln(θt ) = ρθ ln(θt−1)+ εθ,t , ln(λt ) = ρλ ln(λt−1)+ ελ,t , 0 < ρθ , ρλ < 1, (17)

where εθ,t and ελ,t are normal i.i.d. white noises with standard deviations σθ and σλ.
The numerical simulations discussed below assume β = 0.99, η = 4, α = 0.3,

δ = 0.025, ρθ = ρλ = 0.99; parameter values in that range are standard in quarterly
macro models. The risk aversion coefficient is set at a high value, σ = 10, so that
the model has enough curvature to allow for non-negligible differences between the
second-order accurate and linear model approximations. One model variant assumes
shocks that are much larger than the shocks in standard macro models, in order to
generate big differences between the two approximations: σθ = 0.20, σλ = 0.01.
I refer to this variant as the ‘big shocks’ variant. I also consider a second ‘small
shocks’ variant, in which the standard deviations of shocks are twenty times smaller:
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Tractable Latent State Filtering 247

σθ = 0.01, σλ = 0.0005 (conventional RBC models assume that the standard devi-
ation of TFP innovations is about 1 %; e.g., Kollmann 1996).10 The observables are
assumed to be GDP, consumption, investment and hours worked; independent mea-
surement error is added to log observables. Measurement error has a standard deviation
of 0.04 (0.002) for each observable, in the model variant with big (small) shocks.

Chris Sims’ MATLAB program gensys2 is used to compute first- and second-order
accurate model solutions. The model is approximated in terms of logged variables.
I apply the gensys2 algorithm to the 7-equations system (13)–(17) using the state
vector ωt ≡ (ln(Kt+1), ln(Yt ), ln(Ct ), ln(It ), ln(Nt ), ln(θt ), ln(λt )). Simplifying the
system (e.g. by plugging (14) and (15) into (13) and omitting Yt , It ) does not affect
the results.

3.1.1 Predicted Standard Deviations

Table 1 reports unconditional standard deviations of 7 logged variables (GDP, con-
sumption, investment, capital, hours, TFP and the taste shock λ) generated by the first-
and second-order approximations.11 Model variants with both shocks, and variants
with just one type of shock, are considered; moments for non-HP (Hodrick-Prescott)
filtered variables are shown, as well as moments of HP filtered variables (smoothing
parameter: 1600).

In the ‘big shocks’ model variant, the standard deviations of endogenous vari-
ables are huge; e.g., with both shocks, the standard deviation of (non-HP filtered)
GDP is 176 % (82 %) under the second-order (first-order) approximation; GDP is thus
about twice as volatile under the second-order approximation (than in the linearized
model).12 The capital stock, investment and hours worked (non-HP filtered) are about
one-half more volatile under the second-order approximation than under the linear
approximation. By contrast, consumption volatility is similar across the two approx-
imations. Consumption is much less volatile than GDP, due to the assumed high risk
aversion of the household. The preference shock (λ) is the main source of fluctuations
in the capital stock, GDP and investment; the TFP shock (θ) is the main driver of
consumption. The correlation between the second- and first-order approximations of
a given variable is noticeably below unity, in the model variant with big shocks: e.g.,
about 0.7 for capital and investment, and 0.5 for GDP.

The ‘small shocks’ model variant generates much smaller standard deviations
of endogenous variables that are roughly in line with predicted moments reported
in the RBC literature (e.g., Kollmann 1996); e.g., the predicted standard deviation
of HP-filtered GDP and investment are about 1 and 5 %, respectively (with both

10 The relative size of the TFP and taste shocks assumed here (i.e. σθ 20-times larger than σψ) ensures
that each shock accounts for a non-negligible share of the variance of the endogenous variables; see below.
11 The statistics in Table 1 are shown for variables without measurement error. The ranking of volatilities
generated by the two approximations and shocks is not affected by the presence of measurement error.
12 HP filtered variables are markedly less volatile than non-HP filtered variables; however, volatility remains
much higher under the second-order approximation than under the linear approximation, in the ‘big shocks’
variant. E.g. the standard dev. of HP filtered GDP is 47 % (23 %) under the second- (first-) order approxi-
mation.
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Table 1 RBC model: predicted standard deviations

Y C I K N θ λ

(1) (2) (3) (4) (5) (6) (7)

(a) Model variant with big shocks (σθ = 0.20, σλ = 0.01)

(a.1) Non-HP filtered variables

Second-order model approximation

Both shocks 1.757 0.300 5.366 3.400 2.609 1.418 0.071

Just θ shock 0.492 0.264 1.387 0.959 1.761 1.418 0.000

Just λ shock 1.558 0.133 4.799 3.096 1.762 0.000 0.071

Linearized model

Both shocks 0.817 0.276 3.269 2.364 1.862 1.418 0.071

Just θ shock 0.469 0.264 1.285 0.929 1.751 1.418 0.000

Just λ shock 0.669 0.083 3.006 2.174 0.634 0.000 0.071

(a.2) HP filtered variables

Second-order model approximation

Both shocks 0.469 0.053 1.962 0.115 0.688 0.259 0.013

Just θ shock 0.124 0.037 0.483 0.038 0.212 0.259 0.000

Just λ shock 0.420 0.034 1.706 0.104 0.608 0.000 0.013

Linearized model

Both shocks 0.229 0.041 1.059 0.095 0.350 0.259 0.013

Just θ shock 0.118 0.037 0.416 0.037 0.205 0.259 0.000

Just λ shock 0.196 0.016 0.974 0.087 0.284 0.000 0.013

(b) Model variant with small shocks (σθ = 0.01, σλ = 0.0005)

(b.1) Non-HP filtered variables

Second-order model approximation

Both shocks 0.041 0.014 0.164 0.118 0.093 0.071 0.004

Just θ shock 0.023 0.013 0.064 0.046 0.088 0.071 0.000

Just λ shock 0.034 0.004 0.151 0.109 0.032 0.000 0.004

Linearized model

Both shocks 0.041 0.014 0.163 0.118 0.093 0.071 0.004

Just θ shock 0.023 0.013 0.064 0.046 0.088 0.071 0.000

Just λ shock 0.033 0.004 0.150 0.109 0.032 0.000 0.004

(b.2) HP filtered variables

Second-order model approximation

Both shocks 0.011 0.002 0.053 0.005 0.018 0.013 0.001

Just θ shock 0.006 0.002 0.021 0.002 0.010 0.013 0.000

Just λ shock 0.010 0.001 0.049 0.004 0.014 0.000 0.001

Linearized model

Both shocks 0.011 0.002 0.053 0.005 0.018 0.013 0.001

Just θ shock 0.006 0.002 0.021 0.002 0.010 0.013 0.000

Just λ shock 0.010 0.001 0.049 0.004 0.014 0.000 0.001

Note: Standard deviations (SD) of logged variables (listed above Cols. (1)–(7)), without measurement error,
are shown for the RBC model in Sect. 3.1. The SD were computed using the formulae in the Appendix. SD
are not reported in %.
Panel (a) (‘Big shocks’) assumes SD of innovations to TFP θ and to the taste parameter λ of 20 and 1 %,
respectively. Panel (b) (‘Small shocks’) sets these SD at 1 and 0.05 %, respectively. Rows labeled ‘Both
shocks’; ‘Just θ shock’; and ‘Just λ shock’ show moments predicted with simultaneous two shocks; with
just the TFP shock; and with just the taste shock, respectively. Panels (a.1) and (b.1) report moments of
Non-HP filtered variables; Panels (a.2) and (b.2) pertain to HP filtered variables (smoothing parameter:
1600). Y : GDP; C : consumption; I : gross investment; K : capital stock; N : hours worked
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shocks). With small shocks, it remains true that variables are more volatile in the
second-order model than in the linearized model, however, the difference is barely
noticeable. E.g., the ratio of the GDP [investment] standard dev. across the 2nd/1st

order approximations is merely 1.005 [1.002].

3.1.2 Filter Accuracy

I generate 50 simulation runs of T = 500 and of T = 100 periods for the observ-
ables, using the second-order (pruned) state equation of the RBC model. Each run is
initialized at the unconditional mean of the state vector. I apply the KalmanQ filter to
the simulated observables (with measurement error). I also use Ivashchenko’s (2014)
Quadratic Kalman Filter ‘QKF’ and a conventional Kalman filter, referred to as
‘KalmanL’ (that treats the linearized model (3) as the true DGP). In addition, the stan-
dard particle filter (as described in An and Schorfheide 2007)—referred to a ‘PF(p)’,
where p is the number of particles—is applied to the pruned state equation (4); for
the simulation runs with T = 500 periods, 100,000 particles are employed; for runs
with T = 100 periods, versions of the PF with 100,000 and with 500,000 particles are
used.13 Accuracy is evaluated for the 7 logged latent variables considered in Table 1.

In each simulation run s = 1, . . . , 50, the root mean square error
(RMSE) is computed, across all (logged) 7 variables,
RM SEs,All ≡ ( 1

7T

∑7
i=1

∑T
t=1(ω

i
s,t − ωi

s,t,t )
2)1/2, and separately for each indi-

vidual variable i = 1, . . . 7, RM SEs,i ≡ ( 1
T�

T
t=1(ω

i
s,t − ωi

s,t,t )
2)1/2, where ωi

s,t

is the true date t value of variable i in run s, while ωi
s,t,t is the filtered esti-

mate (conditional expectation) of that variable, given the date t information set.
Table 2 reports RMSEs that are averaged across simulation runs. In the Panels
labeled ‘Average RMSEs’, Column (1) shows average RMSE, across all 7 vari-
ables, 1

50

∑50
s=1 RM SEs,AL L , while Cols. (2)–(8) separately show average RMSEs

for each individual variable i, 1
50

∑50
s=1 RM SEs,i . Also reported are maximum

estimation errors across all variables, periods and runs, as well as maximum esti-
mation errors for each variable i (across all periods and all simulation runs); see
Panels labeled ‘Maximum errors’. These accuracy measures are reported for each of
the filters (see rows labeled ‘KalmanQ’, ‘QKF’, ‘PF(100,000)’, ‘PF(500,000)’, and
‘KalmanL’). In addition, I report the fraction of simulation runs in which the KalmanQ
filter generates lower RMSEs and lower maximum estimation error than the other
filters.

Table 2 shows that the KalmanQ filter is more accurate than the PF and KalmanL
filters, in all (or almost all) simulation runs—this holds for both the ‘big shocks’ and
‘small shocks’ model variants.14 In all 50 simulation runs for the ‘big shocks’ model

13 I apply KalmanL to de-meaned series, as the linearized model implies that the unconditional mean
of state variables, expressed as differences from steady state, is zero, while variables generated from the
second-order model have a non-zero mean. The initial particles used for the particle filter are drawn from
a multi-variate normal distribution whose mean and variance are set to unconditional moments of the state
vector.
14 I also computed median absolute errors (MAEs) for the filtered series. The results (available on request)
confirm the greater accuracy of the KalmanQ filter.
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Table 2 RBC model: accuracy of filters

All variables Y C I K N θ λ

(1) (2) (3) (4) (5) (6) (7) (8)

(a) Model variant with big shocks (σθ = 0.20, σλ = 0.01)

(a.1) 50 simulation runs with T = 500 periods

Average RMSEs

KalmanQ 0.157 0.038 0.006 0.040 0.387 0.039 0.127 0.022

QKF – – – – – – – –

PF (100,000) 1.189 1.022 0.188 0.907 2.193 1.447 0.873 0.070

KalmanL 1.939 1.659 0.184 1.605 4.183 0.770 1.143 0.082

Maximum errors

KalmanQ 3.448 0.209 0.024 0.164 3.448 0.166 1.198 0.236

QKF – – – – – – – –

PF (100,000) 20.188 15.750 1.927 10.451 20.188 19.842 4.236 0.563

KalmanL 14.824 14.824 1.275 7.849 13.071 3.820 12.039 0.568

Fraction of runs in which RMSE is lower for KalmanQ than for other filters

QKF – – – – – – – –

PF (100,000) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

KalmanL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96

Fraction of runs in which maximum error is lower for KalmanQ than for other filters

QKF – – – – – – – –

PF (100,000) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

KalmanL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94

(a.2) 50 simulation runs with T = 100 periods

Average RMSEs

KalmanQ 0.176 0.039 0.006 0.039 0.435 0.039 0.141 0.023

QKF 6.994 0.142 0.025 0.065 17.386 0.130 2.383 4.962

PF (100,000) 0.828 0.755 0.121 0.744 1.370 0.892 0.679 0.049

PF (500,000) 0.597 0.527 0.108 0.499 0.892 0.695 0.658 0.030

KalmanL 1.917 1.448 0.176 2.063 3.955 0.973 0.975 0.067

Maximum errors

KalmanQ 2.855 0.160 0.023 0.134 2.855 0.163 0.901 0.226

QKF 1438.080 8.138 1.500 5.763 1438.080 5.482 153.500 606.064

PF (100,000) 13.298 10.615 1.364 9.944 13.190 13.298 2.846 0.414

PF (500,000) 8.018 4.548 0.560 8.018 5.680 4.577 3.425 0.235

KalmanL 11.866 9.826 0.655 8.399 11.866 3.484 5.093 0.332

Fraction of runs in which RMSE is lower for KalmanQ than for other filters

QKF 1.00 1.00 1.00 0.75 1.00 0.89 1.00 1.00

PF (100,000) 1.00 1.00 1.00 1.00 0.84 1.00 1.00 0.64

PF (500,000) 1.00 1.00 1.00 1.00 0.84 1.00 1.00 0.68

KalmanL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

Fraction of runs in which maximum error is lower for KalmanQ than for other filters

QKF 1.00 1.00 0.93 0.64 1.00 0.68 1.00 1.00

PF (100,000) 0.96 1.00 1.00 1.00 0.84 1.00 1.00 0.80

PF (500,000) 1.00 1.00 1.00 1.00 0.80 1.00 1.00 0.76

KalmanL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96
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Table 2 continued

All variables Y C I K N θ λ

(1) (2) (3) (4) (5) (6) (7) (8)

(b) Model variant with small shocks (σθ = 0.01, σλ = 0.0005)

(b.1) 50 simulation runs with T = 500 periods

Average RMSEs

KalmanQ 0.0022 0.0007 0.0003 0.0019 0.0044 0.0019 0.0022 0.0001

QKF 0.0024 0.0007 0.0003 0.0019 0.0049 0.0019 0.0023 0.0001

PF (100,000) 0.0222 0.0068 0.0057 0.0109 0.0180 0.0405 0.0343 0.0007

KalmanL 0.0411 0.0163 0.0059 0.0583 0.0585 0.0397 0.0312 0.0018

Maximum errors

KalmanQ 0.0475 0.0041 0.0011 0.0074 0.0475 0.0081 0.0163 0.0012

QKF 0.0601 0.0103 0.0011 0.0078 0.0601 0.0080 0.0216 0.0017

PF (100,000) 0.2437 0.0434 0.0330 0.0723 0.2438 0.2295 0.1939 0.0054

KalmanL 0.2293 0.0753 0.0248 0.2146 0.2294 0.1837 0.1512 0.0074

Fraction of runs in which RMSE is lower for KalmanQ than for other filters

QKF 0.60 0.32 0.34 0.44 0.58 0.54 0.60 0.64

PF (100,000) 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00

KalmanL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Fraction of runs in which maximum error is lower for KalmanQ than for other filters

QKF 0.54 0.60 0.50 0.52 0.54 0.46 0.64 0.56

PF (100,000) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

KalmanL 0.98 1.00 1.00 0.98 0.92 1.00 0.98 0.94

(b.2) 50 simulation runs with T = 100 periods

Average RMSEs

KalmanQ 0.0042 0.0007 0.0003 0.0019 0.0099 0.0019 0.0035 0.0002

QKF 0.0049 0.0007 0.0003 0.0019 0.0121 0.0019 0.0041 0.0003

PF (100,000) 0.0244 0.0060 0.0051 0.0096 0.0368 0.0362 0.0313 0.0009

PF (500,000) 0.0223 0.0046 0.0039 0.0074 0.0398 0.0278 0.0271 0.0010

KalmanL 0.0508 0.0224 0.0078 0.0819 0.0716 0.0466 0.0357 0.0019

Maximum errors

KalmanQ 0.0496 0.0033 0.0009 0.0073 0.0496 0.0068 0.0171 0.0012

QKF 0.0543 0.0048 0.0009 0.0069 0.0543 0.0069 0.0193 0.0015

PF (100,000) 0.1866 0.0319 0.0261 0.0551 0.1866 0.1848 0.1473 0.0046

PF (500,000) 0.2591 0.0224 0.0171 0.0402 0.2591 0.1189 0.1143 0.0065

KalmanL 0.3001 0.0918 0.0263 0.3001 0.2900 0.1846 0.1424 0.0083
Fraction of runs in which RMSE is lower for KalmanQ than for other filters

QKF 0.66 0.12 0.26 0.46 0.66 0.48 0.66 0.66

PF (100,000) 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.98

PF (500,000) 1.00 1.00 1.00 1.00 0.90 1.00 1.00 0.92

KalmanL 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.90

Fraction of runs in which maximum error is lower for KalmanQ than for other filters

QKF 0.64 0.24 0.46 0.60 0.64 0.48 0.56 0.66

PF (100,000) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PF (500,000) 1.00 1.00 1.00 1.00 0.92 1.00 1.00 0.96

KalmanL 0.98 1.00 1.00 1.00 0.94 1.00 1.00 0.90
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Table 2 continued

Note: The Table reports average Root Mean Squared Errors (RMSEs) and maximum estimation errors of
estimated latent states, across simulation runs (errors are not expressed in %), for different variants of
the RBC model; accuracy is reported across all logged variables (Col. (1) ‘All variables’), and separately
for each logged variable (see Cols. (2)–(8) labeled ‘Y’, . . ., ‘λ’); see Sect. 3.1. for further information.
KalmanQ: the filter for pruned second-order models developed in this paper; QKF: Quadratic Kalman
Filter (Ivashchenko 2014) that assumes that the unpruned second-order model (2) is the true DGP; PF:(p)
standard particle filter with p particles; KalmanL: standard Kalman filter that assumes that the linearized
DSGE model is the true DGP.
Panel (a) (‘Big shocks’) assumes std. of TFP and taste shock innovations of 20 and 1 %, respectively; panel
(b) (‘Small shocks’) sets these standard deviations at 1 and 0.05 %, respectively. Y : GDP; C : consumption;
I : gross investment; K : capital stock; N : hours worked; θ : TFP; λ: taste shock (all variables are expressed
in logs).
The time paths for filtered state estimates generated by the QKF exploded in all 50 simulation runs of the
‘Big shocks’ model variant with T = 500 periods; see Panel (a.1). Thus, no RMSEs and Maximum Errors
are reported for the QKF in Panel (a.1). The QKF exploded in 44 % of the 50 simulation runs of the ‘Big
shocks’ model variant with T = 100 periods; see Panel (a.2). The RMSEs and Maximum Errors for the QKF
reported in Panel (a.2) pertain to the 56 % of the simulation runs in which the QKF did not explode; the
fraction of runs in which RMSEs and Maximum Errors are lower for KalmanQ than for QKF only pertains
to the runs in which QKF did not explode.
The QKF did not explode in the simulation runs of the ‘Small shocks’ model variant (Panel (b))

variant with T=500 periods (see Panel (a.1)), the QKF generated time paths of fil-
tered state estimates that diverged explosively from the true states.15 That problem
never arose for the KalmanQ filter. In the ‘big shocks’ model variant with T=100
periods (see Panel (a.2)), the QKF exploded in 22 of the 50 simulation runs (44 %);
for that variant, the average RMSEs and maximum errors reported for the QKF per-
tain to the simulation runs in which the QKF did not explode; in those simulation
runs the KalmanQ filter is markedly more accurate than the QKF. Average RMSEs
generated by KalmanQ are often orders of magnitudes smaller than the RMSEs gen-
erated by the particle filter, and that even when 500,000 particles are used. E.g.,
for the simulation runs of the ‘big shocks’ model variant with T=100 periods, the
average RMSEs for GDP are 0.039, 0.142, 0.755, 0.527 and 1.488, respectively, for
KalmanQ, QKF, PF(100,000), PF(500,000), and KalmanL; the corresponding maxi-
mum errors are 0.160, 8.138, 10.615, 4.548 and 9.826, respectively (see Panel (a.2),
Col. (2)).

In the ‘small shocks’ simulation runs (Table 2, Panels (b.1) and (b.2)), all the fil-
ters are more accurate than in the ‘big shocks’ simulations, and thus the absolute
accuracy differences between the filters are smaller. The QKF did not explode
in the ‘small shocks’ simulations. The filtered estimates of latent states gener-
ated by the KalmanQ filter and by the QKF are now broadly similar (across all
variables, the KalmanQ filter is more accurate than the QKF in 54–66 % of all
simulation runs; see Column (1)). For the ‘small shocks’ simulation runs with
T=100 periods, the average RMSEs for GDP are 0.0007, 0.0007, 0.0060, 0.0046

15 Once the QKF filtered estimates of the second-order accurate state variables ωt,t reach large values, the
one-step ahead covariance matrix Vωt+1,t takes huge values too (in the QKF, Vωt+1,t depends on ωt,t ); at
that point the observations are no longer able to correct the filtered series, and the filtered series may start
to diverge explosively.
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and 0.0224, for KalmanQ, QKF, PF(100,000), PF(500,000) and KalmanL respec-
tively, while corresponding maximum errors are 0.0033, 0.0048, 0.0319, 0.0224
and 0.0918 (see Panel (b.2)). The relative improvement in accuracy from using the
KalmanQ filter thus remains sizable, relative to the particle filter, and relative to
KalmanL.

Note that the accuracy checks considered so far are based on pruned simulated
sample paths (generated using (3),(4)). It seems interesting to also apply the filters
to sample paths generated by the unpruned model (2). For the ‘big shocks’ model
variant, all unpruned sample paths of length T=100 and T=500 explode. By contrast,
for the ‘small shocks’ model variant, the unpruned sample paths fail to explode—in
fact, those paths are highly correlated with the pruned sample paths; the performance
of the filters is hence similar to that reported in Table 2, for the ‘small shocks’ pruned
model variant.16 Detailed results are available on request.

3.1.3 Computing Time

KalmanQ, QKF, the particle filters with 100,000 and 500,000 particles and KalmanL
require 0.03, 0.05, 14.69, 81.21 and 0.01 seconds, respectively, to filter simulated series
of T=100 periods generated by the RBC model, on a desktop computer with a 64-
bit operating system and a 3.4 Ghz processor. For series of T=500 periods, the
corresponding computing times are 0.12, 0.21, 73.72, 401.58 and 0.04 seconds, respec-
tively. Thus, the KalmanQ filter is about 500 (3000) times faster than the particle filter
with 100,000 (500,000) particles, and approximately 40 % faster than the QKF.

For a sufficiently large number of particles, the particle filter is (asymptotically) an
exact algorithm for computing the conditional expectation of the state vector. However,
the experiments in Table 2 suggest that a very large number of particles (above 500,000)
is needed to outperform KalmanQ; the computational cost of using such a large number
of particles would be substantial.

3.1.4 Evaluating the Quasi-Maximum Likelihood (QML) Parameter Estimates

For 50 simulations runs of the ‘big shocks’ model variant and of the ‘small shocks’
variant, with T=100 periods, I computed QML estimates of the risk aversion coeffi-
cient (σ ), the labor supply elasticity (η), the autocorrelations of the forcing variables
(ρθ , ρλ) and the standard deviations of the innovations to the forcing variables (σθ , σλ).
(As before, four observables are assumed: GDP, consumption, investment and hours.)
Table 3 reports the mean and median parameter estimates, and the standard deviation
of the parameter estimates, across the sample of 50 estimates per model variant. The
parameters are tightly estimated; mean and median parameter estimates are close to
the true parameter values.17

16 For the unpruned ‘small shocks’ sample paths, the KalmanQ filter and the QKF thus have similar
performance; with T=100 [T=500], the KalmanQ filter is more accurate (across all variables) than the
QKF in about 45 % [54 %] of the simulation runs.
17 A more detailed evaluation of the small sample properties of the QML estimator is left for future research.
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Table 3 RBC model: distribution of quasi-maximum likelihood estimates of model parameters based on
the KalmanQ filter

σ η ρθ ρλ σθ σλ

(1) (2) (3) (4) (5) (6)

(a) Model variant with big shocks (σθ = 0.20, σλ = 0.01)

True parameter value 10.00 4.00 0.99 0.99 20.00 % 1.00 %

Mean estimate 10.41 4.13 0.99 0.98 18.73 % 0.97 %

Median estimate 10.09 4.01 0.99 0.98 18.71 % 0.92 %

Standard dev. of estimates 1.36 1.53 0.003 0.005 1.44 % 0.21 %

(b) Model variant with small shocks (σθ = 0.01, σλ = 0.0005)

True parameter value 10.00 4.00 0.99 0.99 1.00 % 0.05 %

Mean estimate 10.26 4.85 0.99 0.69 0.76 % 0.20 %

Median estimate 10.15 3.40 0.99 0.69 0.74 % 0.18 %

Standard dev. of estimates 1.20 3.39 0.005 0.26 0.12 % 0.14 %

Note: The Table reports true parameter values, as well as the mean, median and standard deviation of
quasi-maximum likelihood (QML) estimates of structural model parameters based on the KalmanQ filter
(developed in this paper), obtained for 50 simulation runs with T = 100 periods of the ‘big shocks’ RBC
model variant (Panel (a)) and for 50 simulation runs (T = 100) of the ‘small shocks’ RBC model variant
(Panel (b)). Four observables (GDP, consumption, investment and hours) are used for the QML estimation.
σ : risk aversion coefficient (Col. (1)); η: Frisch labor supply elasticity (Col. (2)); ρθ [ρλ]: autocorrelation
of TFP [taste shock] (Cols. (3)–(4)); σθ [σλ]: standard deviation of TFP [taste shock] innovation (Cols.
(5)–(6))

3.2 State Equations with Randomly Drawn Coefficients

Many other Monte Carlo experiments confirmed that the KalmanQ filter is competitive
with the particle filter, in terms of accuracy of the estimated state variables. To docu-
ment the performance of the filter in a broad range of setting, I applied it to simulated
data generated using variants of the pruned state equations (3),(4) whose coefficients
were drawn randomly from normal distributions. Tables 4 reports moments of the
resulting simulated latent state variables, while Table 5 documents the accuracy of the
filters. In both Tables, Panel (a) pertains to models with n = 20 variables, while Panel
(b) assumes n = 7 variables; I refer to the models in Panels (a) and (b) as ‘medium
models’, and as ‘small models’, respectively. In both set-ups, m = 7 independent
exogenous innovations are assumed, and the first four elements of the state vector
ωt are observed with measurement error (nY = 4). The standard deviations of the
(independent) exogenous innovations (εt+1) and of measurement errors (ψt ) are set
at 1 %.18 The elements of F0 are independent draws from N (0, 1) that are scaled by a
common factor so that the largest element of F0 is (0.01)2 in absolute value. The ele-
ments of F1 are independent draws from N (0, 1) that are scaled by a common factor so
that the largest eigenvalue of F1 has an absolute value of 0.99. The elements of F2 are
independent draws from N (0, 1). In one set of simulations, referred to as ‘strong cur-

18 �ε = (.01)2 Im ;�ψ = (.01)2 Iny . As before, the parameter ξ that scales the size of the shocks is
normalized as ξ = 1.
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Table 4 Models with randomly drawn coefficients: average standard deviations of state variables

Strong curvature Weak curvature

(1) (2)

(a) Medium models (n= 20)

(a.1) Non-HP filtered variables

Second-order approximated model 3.061 0.119

Linearized model 0.106 0.106

(a.2) HP filtered variables

Second-order approximated model 1.089 0.094

Linearized model 0.092 0.092

(b) Small models (n = 7)

(b.1) Non-HP filtered variables

Second-order approximated model 2.446 0.147

Linearized model 0.144 0.144

(b.2) HP filtered variables

Second-order approximated model 0.678 0.116

Linearized model 0.115 0.115

Note: The Table reports average standard deviations of simulated state variables generated by pruned
state equations (see (3), (4)) whose coefficients were drawn randomly from normal distributions. Panel
(a) considers models with n = 20 variables (‘medium models’), while Panel (b) pertains to models with
n = 7 variables (‘small models’). In Column (1), labeled ‘Strong curvature’, all elements of the matrices
of curvature coefficients F11, F12, F22 are independent draws from N(0,1); in Column (2), labeled ‘Weak
curvature’, F11, F12, F22 are independent draws from N (0, (0.01)2), so that curvature is much smaller, on
average than in Column (1). (See Sect. 3.2 for further details.)
For both the ‘medium’ and ‘small’ model variants, 50 random ‘strong curvature’ coefficient sets, and 50
random ‘weak curvature’ coefficient sets were drawn. For each of the resulting 200 sets of coefficients, the
model was simulated over T = 100 periods. For each simulation run, the standard deviation of each state

variable (i.e. of each element of the vectors ωt and ω(1)t )was computed (without measurement error); then,
standard deviations were averaged across all variables and coefficient draws, for each of the four model
classes (medium/small models with strong/weak curvature), respectively. The Table shows those averaged
standard deviations. (The averaged standard deviations are not reported in %.)
The rows labeled ‘second-order approximated model’ and ‘linearized model’ show average standard devi-

ations of elements of the state vectors ωt and of ω(1)t , respectively, where ωt is generated using the pruned

quadratic state equation (4), while ω(1)t is generated using the linearized state equation (3)

vature’ simulations, all elements of F11, F12, F22 are independent draws from N (0, 1);
in another set of simulations with ‘weak curvature’, the elements of F11, F12, F22 are
independent draws from N (0, (0.01)2), so that curvature is much smaller, on average.
For both the ‘medium’ and ‘small’ model variants, 50 random ‘strong curvature’ coef-
ficient sets, and 50 random ‘weak curvature’ coefficient sets were drawn. Thus, 200
different random sets of coefficients (F0, F1, F2, F11, F12, F22) are considered. For
each set of coefficients, the state equations (3) and (4) were simulated over T=100
periods (each run was initialized at the unconditional mean of the state vector), and
the filters were applied to the observables (with measurement error).

Table 4 reports (averaged) standard deviations of the latent state variables for the
‘medium’ and ‘small’ model variants with ‘strong curvature’ (Col. (1)) and with ‘weak
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Table 5 Models with randomly drawn coefficients: accuracy of filters

Strong curvature Weak curvature

(a) Medium models (n = 20)

Average RMSEs

KalmanQ 0.155 0.0308

QKF – 0.0320

PF (100,000) 31.243 0.0851

KalmanL 2.978 0.0523

Maximum errors

KalmanQ 4.784 0.2789

QKF – 0.3612

PF (100,000) 4440.00 9.3808

KalmanL 149.441 1.2315

Fraction of runs in which RMSE is lower for KalmanQ than for other filters

QKF – 0.38

PF (100,000) 1.00 0.98

KalmanL 1.00 0.94

Fraction of runs in which maximum error is lower for KalmanQ than for other filters

QKF – 0.52

PF (100,000) 1.00 0.76

KalmanL 0.98 0.74

(b) Small models (n = 7)

Average RMSEs

KalmanQ 0.035 0.0184

QKF 0.204 0.0185

PF (100,000) 38.082 0.0186

KalmanL 1.651 0.0409

Maximum errors

KalmanQ 1.12 0.0943

QKF 41.93 0.1084

PF (100,000) 3263.28 0.0954

KalmanL 37.38 0.1265

Fraction of runs in which RMSE is lower for KalmanQ than for other filters

QKF 1.00 0.42

PF (100,000) 0.76 0.76

KalmanL 1.00 0.96
Fraction of runs in which maximum error is lower for KalmanQ than for other filters

QKF 1.00 0.52

PF (100,000) 0.82 0.50

KalmanL 1.00 0.66
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Table 5 continued

Note: The Table reports average Root Mean Squared Errors (RMSEs) and maximum estimation errors of
estimated latent variables produced by four filters, across simulation runs and state variables, for versions
of the pruned state equation (4) with randomly drawn coefficients; see Sect. 3.2. Panel (a) (‘medium
models’) assumes n = 20 variables; Panel (b) (‘small model’) assumes n = 7 variables. In ‘strong curvature’
[‘weak curvature’] experiments (see Column 1 [2]), all elements of the matrices of curvature coefficients
F11, F12, F22 are independent draws from N (0, 1)[N (0, (0.01)2) ]. (See Sect. 3.2 for further details.) For
both the ‘medium’ and ‘small’ model variants, 50 random ‘strong curvature’ coefficient sets, and 50 random
‘weak curvature’ coefficient sets were drawn. For each of the resulting 200 sets of coefficient, the model
was simulated over T = 100 periods.
For each simulation run, the RMSE and the maximal error was computed, for each of the ‘n’ estimated latent
variables; then, RMSEs were averaged across variables and coefficient draws, for each of the four model
classes (medium/small models with strong/weak curvature); maximum errors were likewise determined
across all n variables, and across all draws, for each of the four model classes.
KalmanQ: the filter for pruned second-order models developed in this paper; QKF: Quadratic Kalman
Filter (Ivashchenko 2014) that assumes that the unpruned second-order model (2) is the true DGP; PF(p):
standard particle filter with pparticles; KalmanL: standard Kalman filter that assumes that the linearized
model is the true DGP.
The time paths for filtered estimates of the state variables generated by the QKF exploded in all 50 simulation
runs of the ‘medium models’ with ‘strong curvature’; thus, no RMSEs and Maximum Errors are reported
for the Quadratic Kalman Filter (QKF) in Column (1) of Panel (a).
The QKF exploded in 48 % of the 50 simulation runs of the ‘small models’ with ‘strong curvature’; the
RMSEs and Maximum Errors for the QKF reported in Column (1) of Panel (b) pertain to the 52 % of the
simulation runs in which the QKF did not explode; the reported fraction of runs in which RMSEs and
Maximum Errors are lower for KalmanQ than for QKF likewise only pertains to the runs in which QKF
did not explode.
The QKF did not explode in the simulation runs of the ‘weak curvature’ model variants (Column (2))

curvature’ (Col. (2)). The rows labeled ‘Second-order approximated model’ and ‘Lin-
earized model’ show (averaged) standard deviations of ωt and of ω(1)t , respectively,
where ωt was generated using the pruned quadratic state equation (4), while ω(1)t
was generated using the linear state equation (3).19 In ‘strong curvature’ model vari-
ants, the average predicted volatility of ωt (second-order accurate) is several times
larger than that of ω(1)t . By contrast, in the ‘weak curvature’ variants, the volatility of
the second-order accurate variables is only slightly higher than that of the first-order
accurate variables.

Table 5 compares the accuracy of the KalmanQ, QKF, PF(100,000) and KalmanL
filters, for each of the four model classes (medium/small models with strong/weak
curvature). For each model class, the KalmanQ filter generates lower average RMSEs
and lower maximum errors than the PF(100,000) and KalmanL filters. E.g., for the
‘medium models’, the average RMSEs of KalmanQ, PF(100,000) and KalmanL are
0.155, 31.243 and 2.978, respectively, under ‘strong curvature’, and 0.031, 0.085 and
0.052, respectively under ‘weak curvature’ (see Panel (a)).

The time paths of filtered estimates of state variables generated by the QKF exploded
in all simulation runs for ‘medium models’ with ‘strong curvature’. For ‘small models’
with ‘strong curvature’, the QKF exploded in 48 % of the simulation runs; for the

19 For each simulation run, the standard deviation of each element of ωt and ω(1)t was computed; then,
standard deviations were averaged across variables and coefficient draws, for each of the four model classes
(medium/small models with strong/weak curvature).
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runs where the QKF did not explode, the KalmanQ filter is markedly more accurate
than the QKF (see Column (1) of Panel (b), Table 5). In the ‘weak curvature’ model
variants, by contrast, the QKF did not explode in any of the runs–KalmanQ is slightly
more accurate than QKF in terms of average RMSEs and Maximum Errors across all
simulation runs.20

KalmanQ, QKF, PF(100,000) and KalmanL require 0.10, 0.14, 24.78 and 0.02 s,
respectively, to filter simulated series of T=100 periods generated by the ‘small mod-
els’; for ‘medium models’ the corresponding computing times are 0.86, 0.17, 78.49
and 0.03 s, respectively. This confirms the finding that the KalmanQ filter is much
faster than the particle filter. The KalmanQ filter is faster than the QKF for ‘small
models’, but not for ‘medium models’.

4 Conclusion

This paper has developed a novel approach for the estimation of latent state variables
in DSGE models that are solved using a second-order accurate approximation and the
‘pruning’ scheme of Kim et al. (2008). By contrast to particle filters, no stochastic sim-
ulations are needed for the deterministic filter here; the present method is thus much
faster than particle filters. The use of the pruning scheme distinguishes the filter devel-
oped here from Ivashchenko’s (2014) deterministic Quadratic Kalman filter (QKF).
The present filter performs well even in models with big shocks and high curvature. In
Monte Carlo experiments, the filter developed here generates more accurate estimates
of latent state variables than the standard particle filter, especially when the model has
big shocks and high curvature. The present filter is also more accurate than a Kalman
filter that treats the linearized model as the true DGP. Due to its high speed, the filter
presented here is suited for the estimation of model parameters; a quasi-maximum
likelihood procedure can be used for that purpose.
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Appendix: Computing Moments of the State Vector (for KalmanQ Filter
Formula)

The unconditional mean and variance of the state vector Zt+1 of the augmented
state equation (5) are given by: E(Zt+1) = (I − G1)

−1G0 and V (Zt+1) =
G1V (Zt+1)G ′

1 + V (ut+1), respectively. Stationarity of Zt+1 (which holds under
the assumption that all eigenvalues of F1 are strictly inside the unit circle) implies

20 I also examined filter performance using unpruned sample paths generated by the state equations with
randomly drawn coefficients (results available in request). All ‘strong curvature’ model variants generated
exploding unpruned sample paths. In the ‘weak curvature’ model variants, none of the unpruned sample
paths exploded—pruned and unpruned sample paths were highly correlated; the QKF and KalmanQ filter
showed similar performance.
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E(Zt+1) = E(Zt ), V (Zt+1) = V (Zt ). Once V (ut+1) has been determined,
V (Zt+1) can efficiently be computed using a doubling algorithm. Note that ω(1)t =∑∞

i=0 (F1)
i F2εt−i and recall that

ut+1 ≡ G2εt+1 + G12ω
(1)
t ⊗εt+1 + G22[P(εt+1)− E(P(εt+1))]. (A.1)

E(ω(1)t )=0, E(ω(1)t ⊗εt+1)=0, E((ω(1)t ⊗εt+1)ε
′
t+1)=0, E((ω(1)t ⊗εt+1)P(εt+1)

′)=0
hold as εt+1 has mean zero and is serially independent. Hence, the covariances
between the first and second right-hand side (rhs) terms in (A.1), and between the
second and third rhs terms are zero. εt ∼ N (0, �ε) implies that the unconditional
mean of all third order products of elements of εt+1 is zero (Isserlis’ theorem):
Eεi

t+1ε
j
t+1ε

k
t = 0 for all i, j, k = 1, . . . ,m, where εh

t+1 is the h-th element of εt+1.
Thus the covariance between the first and third rhs terms in (A.1) too is zero. Note
that V (ω(1)t ⊗εt+1) = V (ω(1)t )⊗�ε, with V (ω(1)t ) = F1V (ω(1)t )F ′

1 + F2�εF ′
2. Thus,

V (ut+1) = G2�εG
′
2 + G12(V (ω

(1)
t )⊗�ε)G ′

12 + G22V (P(εt+1))G
′
22.

εt ∼ N (0, �ε) also implies that the covariance between εi
t+1ε

j
t+1 and εr

t+1ε
s
t+1 is

Cov(εi
t+1ε

j
t+1, ε

r
t+1ε

s
t+1) = σi,rσ j,s + σi,sσ j,r for i,j,r,s = 1, . . . , m,

where σi,r = E(εi
t+1ε

r
t+1). (See, e.g., Triantafyllopoulos 2002). This formula allows

to compute V (P(εt+1)), the covariance matrix of the vector

P(εt+1) ≡ (ε1
t+1ε

1
t+1, ε

1
t+1ε

2
t+1, . . . , ε

1
t+1ε

m
t+1, ε

2
t+1ε

2
t+1, . . . , ε

2
t+1ε

m
t+1, . . . ,

εm−1
t+1 ε

m−1
t+1 , ε

m−1
t+1 ε

m
t+1, ε

m
t+1ε

m
t+1).

Conditional Variance of State-Space Disturbance

To derive the formula for the conditional variance of ut+1 [(10) in main text] these
facts are used:

(i) E((ω(1)t ⊗εt+1)ε
′
t+1|ϒ t ) = ω

(1)
t,t ⊗�ε, with ω(1)t,t ≡ E(ω(1)t |ϒ t ).

(ii) E((ω(1)t ⊗ εt+1)(ω
(1)
t ⊗ εt+1)

′|ϒ t ) = E((ω(1)t ω
(1)′
t ) ⊗ (εt+1ε

′
t+1)|ϒ t ) =

E((ω(1)t ω
(1)′
t )|ϒ t ) ⊗ �ε = (V ω(1)

t,t + ω
(1)
t,t ω

(1)
t,t ′) ⊗ �ε. (Note that

V ω(1)

t,t = E(ω(1)t ω
(1)′
t |ϒ t )−E(ω(1)t |ϒ t )E(ω(1)t |ϒ t )′ = E(ω(1)t ω

(1)′
t |ϒ t )−ω(1)t,t ω

(1)′
t,t .)

(iii) E(P(εt+1)ε
′
t+1|ϒ t ) = 0, E(P(εt+1)(ω

(1)
t ⊗εt+1)

′|ϒ t ) = 0 (due to Isserlis’
theorem). Thus, the conditional covariance between the 1st and 3rd rhs terms in
(A.1) and between the 2nd and 3rd rhs terms is zero.
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